Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 77: 102429, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277900

RESUMO

Bacteriophages are being rediscovered as potent agents for medical and industrial applications. However, finding a suitable phage relies on numerous factors, including host specificity, burst size, and infection cycle. The host range of a phage is, besides phage defense systems, initially determined by the recognition and attachment of receptor-binding proteins (RBPs) to the target receptors of susceptible bacteria. RBPs include tail (or occasionally head) fibers and tailspikes. Owing to the potential flexibility and heterogeneity of these structures, they are often overlooked during structural studies. Recent advances in cryo-electron microscopy studies and computational approaches have begun to unravel their structural and fundamental mechanisms during phage infection. In this review, we discuss the current state of research on different phage tail and head fibers, spike models, and molecular mechanisms. These details may facilitate the manipulation of phage-host specificity, which in turn will have important implications for science and society.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Microscopia Crioeletrônica , Ligação Proteica
2.
Fungal Biol Biotechnol ; 10(1): 21, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957766

RESUMO

BACKGROUND: Asexually developed fungal spores (conidia) are key for the massive proliferation and dispersal of filamentous fungi. Germination of conidia and subsequent formation of a mycelium network give rise to many societal problems related to human and animal fungal diseases, post-harvest food spoilage, loss of harvest caused by plant-pathogenic fungi and moulding of buildings. Conidia are highly stress resistant compared to the vegetative mycelium and therefore even more difficult to tackle. RESULTS: In this study, complementary approaches are used to show that accumulation of mannitol and trehalose as the main compatible solutes during spore maturation is a key factor for heat resistance of conidia. Compatible solute concentrations increase during conidia maturation, correlating with increased heat resistance of mature conidia. This maturation only occurs when conidia are attached to the conidiophore. Moreover, conidia of a mutant Aspergillus niger strain, constructed by deleting genes involved in mannitol and trehalose synthesis and consequently containing low concentrations of these compatible solutes, exhibit a sixteen orders of magnitude more sensitive heat shock phenotype compared to wild-type conidia. Cultivation at elevated temperature results in adaptation of conidia with increased heat resistance. Transcriptomic and proteomic analyses revealed two putative heat shock proteins to be upregulated under these conditions. However, conidia of knock-out strains lacking these putative heat shock proteins did not show a reduced heat resistance. CONCLUSIONS: Heat stress resistance of fungal conidia is mainly determined by the compatible solute composition established during conidia maturation. To prevent heat resistant fungal spore contaminants, food processing protocols should consider environmental conditions stimulating compatible solute accumulation and potentially use compatible solute biosynthesis as a novel food preservation target.

3.
Sci Rep ; 13(1): 20153, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978256

RESUMO

Despite the rising interest in bacteriophages, little is known about their infection cycle and lifestyle in a multicellular host. Even in the model system Streptomyces, only a small number of phages have been sequenced and well characterized so far. Here, we report the complete characterization and genome sequences of Streptomyces phages Vanseggelen and Verabelle isolated using Streptomyces coelicolor as a host. A wide range of Streptomyces strains could be infected by both phages, but neither of the two phages was able to infect members of the closely related sister genus Kitasatospora. The phages Vanseggelen and Verabelle have a double-stranded DNA genome with lengths of 48,720 and 48,126 bp, respectively. Both phage genomes contain 72 putative genes, and the presence of an integrase encoding protein indicates a lysogenic lifestyle. Characterization of the phages revealed their stability over a wide range of temperatures (30-45 °C) and pH values (4-10). In conclusion, Streptomyces phage Vanseggelen and Streptomyces phage Verabelle are newly isolated phages that can be classified as new species in the genus Camvirus, within the subfamily Arquattrovirinae.


Assuntos
Bacteriófagos , Siphoviridae , Streptomyces , Streptomyces/genética , Genoma Viral , DNA Viral/genética , Siphoviridae/genética , Filogenia
4.
Microbiol Spectr ; 11(4): e0097323, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458599

RESUMO

Carnobacterium divergens is frequently isolated from natural environments and is a predominant species found in refrigerated foods, particularly meat, seafood, and dairy. While there is substantial interest in using C. divergens as biopreservatives and/or probiotics, some strains are known to be fish pathogens, and the uncontrolled growth of C. divergens has been associated with food spoilage. Bacteriophages offer a selective approach to identify and control the growth of bacteria; however, to date, few phages targeting C. divergens have been reported. In this study, we characterize bacteriophage cd2, which we recently isolated from minced beef. A detailed host range study reveals that phage cd2 infects certain phylogenetic groups of C. divergens. This phage has a latent period of 60 min and a burst size of ~28 PFU/infected cell. The phage was found to be acid and heat sensitive, with a complete loss of phage activity when stored at pH 2 or heated to 60°C. Electron microscopy shows that phage cd2 is a siphophage, and while it shares the B3 morphotype with a unique cluster of Listeria and Enterococcus phages, a comparison of genomes reveals that phage cd2 comprises a new genus of phage, which we have termed as Carnodivirus. IMPORTANCE Currently, very little is known about phages that infect carnobacteria, an important genus of lactic acid bacteria with both beneficial and detrimental effects in the food and aquaculture industries. This report provides a detailed characterization of phage cd2, a novel siphophage that targets Carnobacterium divergens, and sets the groundwork for understanding the biology of these phages and their potential use in the detection and biocontrol of C. divergens isolates.


Assuntos
Bacteriófagos , Animais , Bovinos , Bacteriófagos/genética , Filogenia , Carne/microbiologia , Carnobacterium
5.
Appl Environ Microbiol ; 89(1): e0159622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602353

RESUMO

Bacteriophages are viruses that infect bacteria. This property makes them highly suitable for varied uses in industry or in the development of the treatment of bacterial infections. However, the conventional methods that are used to isolate and analyze these bacteriophages from the environment are generally cumbersome and time consuming. Here, we adapted a high-throughput microfluidic setup for long-term analysis of bacteriophage-bacteria interaction and demonstrate isolation of phages from environmental samples. IMPORTANCE Bacteriophages are gaining increased attention for their potential application as agents to combat antibiotic-resistant infections. However, isolation and characterization of new phages are time consuming and limited by currently used methods. The microfluidics platform presented here allows the isolation and long-term analysis of phages and their effect on host cells with fluorescent light microscopy imaging. Furthermore, this new workflow allows high-throughput characterization of environmental samples for the identification of phages alongside gaining detailed insight into the host response. Taken together, this microfluidics platform will be a valuable tool for phage research, enabling faster and more efficient screening and characterization of host-phage interactions.


Assuntos
Infecções Bacterianas , Bacteriófagos , Humanos , Bacteriófagos/fisiologia , Microfluídica , Infecções Bacterianas/terapia , Bactérias
6.
Sci Rep ; 12(1): 17785, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273096

RESUMO

Streptomycetes are ubiquitous soil bacteria. Here we report the complete and annotated genome sequence and characterization of Streptomyces phage Pablito, isolated from a soil sample in Haarlem, the Netherlands using Streptomyces lividans as host. This phage was able to infect a diverse range of Streptomyces strains, but none belonging to the sister genus Kitasatospora. Phage Pablito has double-stranded DNA with a genome length of 49,581 base pairs encoding 76 putative proteins, of which 26 could be predicted. The presence of a serine integrase protein indicated the lysogenic nature of phage Pablito. The phage remained stable over a wide range of temperatures (25-45 °C) and at pH ≥ 7.0, but lost infectivity at temperatures above 55 °C or when the pH dropped below 6.0. This newly isolated phage is closely related to Streptomyces phage Janus and Hank144 and considered a new species classified in the genus Janusvirus, within the subfamily Arquattrovirinae.


Assuntos
Bacteriófagos , Streptomyces , Bacteriófagos/genética , Streptomyces/genética , DNA Viral/genética , Integrases , Solo , Serina
8.
Open Biol ; 12(6): 210379, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35673854

RESUMO

Phages are highly abundant in the environment and pose a major threat for bacteria. Therefore, bacteria have evolved sophisticated defence systems to withstand phage attacks. Here, we describe a previously unknown mechanism by which mono- and diderm bacteria survive infection with diverse lytic phages. Phage exposure leads to a rapid and near-complete conversion of walled cells to a cell-wall-deficient state, which remains viable in osmoprotective conditions and can revert to the walled state. While shedding the cell wall dramatically reduces the number of progeny phages produced by the host, it does not always preclude phage infection. Altogether, these results show that the formation of cell-wall-deficient cells prevents complete eradication of the bacterial population and suggest that cell wall deficiency may potentially limit the efficacy of phage therapy, especially in highly osmotic environments or when used together with antibiotics that target the cell wall.


Assuntos
Bacteriófagos , Antibacterianos , Bactérias , Bacteriófagos/genética , Parede Celular
9.
Open Biol ; 11(9): 210199, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34465216

RESUMO

The cell wall plays a central role in protecting bacteria from some environmental stresses, but not against all. In fact, in some cases, an elaborate cell envelope may even render the cell more vulnerable. For example, it contains molecules or complexes that bacteriophages recognize as the first step of host invasion, such as proteins and sugars, or cell appendages such as pili or flagella. In order to counteract phages, bacteria have evolved multiple escape mechanisms, such as restriction-modification, abortive infection, CRISPR/Cas systems or phage inhibitors. In this perspective review, we present the hypothesis that bacteria may have additional means to escape phage attack. Some bacteria are known to be able to shed their cell wall in response to environmental stresses, yielding cells that transiently lack a cell wall. In this wall-less state, the bacteria may be temporarily protected against phages, since they lack the essential entities that are necessary for phage binding and infection. Given that cell wall deficiency can be triggered by clinically administered antibiotics, phage escape could be an unwanted consequence that limits the use of phage therapy for treating stubborn infections.


Assuntos
Bactérias/virologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/antagonistas & inibidores , Bacteriófagos/fisiologia , Membrana Celular/fisiologia , Parede Celular/fisiologia , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...